:tocdepth: 2 .. _plot: ****************************** Plotting, I: View 1D array(s) ****************************** .. contents:: :local: .. highlight:: python We often want to visualize data or results. There are many, many ways to make graphs, plots or images, depending on the type of data and context. We start here by considering basic plotting of two variables, i.e., the classic "x-y" plots. We will meet Python's Matplotlib module, which will be essential to this work. Additionally, we will also use the NumPy module quite a bit, because we will be working with arrays:: import matplotlib.pyplot as plt # for plotting import numpy as np # for working with arrays Basic plot ========== Let's say we're interested in plotting a relation between two variables such as :math:`y = x^2` in a given interval :math:`x \in [-2, 2].` Mathematically, there is a continuous relationship between two real numbers, and that all the values are well-behaved (no infinities). How do we use a computer to display this? Well, Python will not be able to generate a plot of :math:`x` and :math:`y` from the abstract/generalized mathematical formula above. We will need to generate concrete values to approximate the curve and then plot these. Essentially, we have to back to basics, to our early school days when we learned to plot by hand. To approximate a continuous curve, we: made a column of :math:`x` values and then a corresponding column of calculated :math:`y` values; drew a coordinate plane and placed a dot on it for each :math:`(x_i, y_i)` pair; and then connected the dots in order using a straight line segment. Below is the kind of image that would result, and in fact *this* is exactly how we will harness the amazing technological innovations of computers: .. list-table:: :header-rows: 1 :widths: 100 :stub-columns: 0 * - .. image:: media/plot/basic_plot_drawn_00.png :width: 60% :align: center :alt: plot of two arrays * - *Recalling early days of simple plotting: construct two columns of numbers, with each* i\ *th row providing an* :math:`(x_i, y_i)` *pair to be placed on the graph at the right. The pairs can be connected by straight lines for (sometimes blocky) continuity.* In the previous section, we studied :ref:`1D arrays `. Do you see any way we can apply knowledge here? Well, looking at the sequence of numbers in *x* and *y* above, each looks like a 1D array, doesn't it? Indeed, to start translating what the above into programming, we can first use arrays to store the values of the *x* and *y* columns. We might notice that *x* has evenly spaced values, so we could use a numpy function built for making such an array easily; for *y*, we will just type out the values:: x = np.linspace(-2, 2, 5) # 5 values: -2. -1. 0. 1. 2. y = np.array([4, 1, 0, 1, 4]) Looking at our plot above, we should appreciate that the ``x`` and ``y`` arrays must always have the same length: each point is a coordinate pair of a corresponding element in the two arrays---e.g., :math:`(x_0, y_0)` or, programmatically, ``(x[0], y[0])``. .. container:: qpractice **Q:** How could you write a Python expression to check that the two arrays have the same length? .. hidden-code-block:: python :linenos: :label: + show/hide code if len(x) != len(y) : print("Hey! The length of x and y differ!") print("The lengths are", len(x), "and", len(y), ", respectively.") else: print("All good. Each array has length:", len(x)) We can then make use of the ``plt.plot()`` function to generate the graph of the element pairs. Let's look at its help for usage via ``plt.plot?``. Here, we just show the top section of the docstring (which is quite long, with a great amount of control of plotting behavior) and then the top part of the description of the parameters (which is further down in the help): .. code-block:: none :linenos: Signature: plt.plot(*args, scalex=True, scaley=True, data=None, **kwargs) Docstring: Plot y versus x as lines and/or markers. Call signatures:: plot([x], y, [fmt], *, data=None, **kwargs) plot([x], y, [fmt], [x2], y2, [fmt2], ..., **kwargs) The coordinates of the points or line nodes are given by *x*, *y*. The optional parameter *fmt* is a convenient way for defining basic formatting like color, marker and linestyle. It's a shortcut string notation described in the *Notes* section below. >>> plot(x, y) # plot x and y using default line style and color >>> plot(x, y, 'bo') # plot x and y using blue circle markers >>> plot(y) # plot y using x as index array 0..N-1 >>> plot(y, 'r+') # ditto, but with red plusses ... Parameters ---------- x, y : array-like or scalar The horizontal / vertical coordinates of the data points. *x* values are optional and default to `range(len(y))`. Commonly, these parameters are 1D arrays. In Line 1, we see a couple keyword args provided, but in fact there are too many possible input parameters and combinations to list there individually, so the help just puts ``*args`` and ``**kwargs`` to denote that more of each kind of input are possible. Looking at the example call signatures in Lines 7-8, we see thing that might be what we want we want: plotting one or two 1D arrays (because in lines 25-27, we see that that is what ``x`` and ``y`` commonly represent). In Lines 16-17 we see basic examples of plotting "y vs x", or in Lines 18-19 we see we could just "y" by itself, with abscissa values automatically made as int values from :math:`[0, N)`. These look usable with the arrays we have, so let's try the first one from Line 16:: plot(x, y) plt.show() Why are there two commands needed here? Well, plotting is generally is a two-step process in Python: first, *make* the plot; then, *show* the plot. And that plot looks like this: .. figure:: media/plot/plot_ex_00.svg :figwidth: 60% :align: center :alt: plot of two arrays, Ex 0 .. created with: plt.plot(x,y); plt.savefig("plot_ex_00.svg") \.\.\. which is basically what we had above (just without the :math:`x=0` and :math:`y=0` lines). What do the other three example plots in Lines 17-19 look like? They play around with plotting styles and properties. For example, they show the points separately with "marker" symbols and change colors: ``'bo'`` is a shortcut, where "b" is for blue and "o" for a circle marker; ``'r+'`` is similar, but for red cross markers. By putting only one array in the positional arguments, the x-axis becomes the integer-spaced values from :math:`[0, N)`: .. list-table:: :widths: 33 33 33 :align: center * - .. image:: media/plot/plot_ex_01.svg :align: center :alt: plot of two arrays, Ex 1 - .. image:: media/plot/plot_ex_02.svg :align: center :alt: plot of two arrays, Ex 2 - .. image:: media/plot/plot_ex_03.svg :align: center :alt: plot of two arrays, Ex 3 * - ``plt.plot(x,y, 'bo')`` - ``plt.plot(y)`` - ``plt.plot(y, 'r+')`` .. created with: plt.figure("p1"); plt.plot(x,y, 'bo'); plt.savefig("plot_ex_01.svg") plt.figure("p2"); plt.plot(y); plt.savefig("plot_ex_02.svg") plt.figure("p3"); plt.plot(y, 'r+'); plt.savefig("plot_ex_03.svg") Note that the cases of only ``y`` being plotted are not appropriate here; the curve is effectively shifted to the right, as seen by the minimum appearing where ``x=2``. But in other cases, it might be a useful syntax. There is a lot of overlapping functionality across Matplotlib functions and arguments to control the appearance of plots. We will try to introduce a starting sampler of optionality, below. In all cases, we recommend browsing the help docstrings of the mentioned functions, as well as explore others in the module. Plot styles and properties ==================================== More than one line can be plotted on a graph. Let's add another array of ordinates (and keep the same x-values):: y2 = np.array([-1, 2, 0.5, -0.5, 1]) By default, Python will add new lines with distinct colors, but let's look at specifying colors, as well as line styles and marker styles. In most cases we will specify these things with keyword arguments to the plotting function. Again, the ``plt.plot?`` doc string is long, but under "Properties:" there is a list of kwargs, of which a few relevant ones are: .. code-block:: none :linenos: ... Properties: color or c: color linestyle or ls: {'-', '--', '-.', ':', '', (offset, on-off-seq), ...} linewidth or lw: float marker: marker style markeredgecolor or mec: color markeredgewidth or mew: float markerfacecolor or mfc: color markerfacecoloralt or mfcalt: color markersize or ms: float ... In some cases there is both a long and short version of the same keyword (e.g., ``linewidth`` and ``lw``). To the right of the colon, the kind of expected value is listed, in most cases here either a float (for a size) or a string (for a color or style). Example linestyle values are provided there, but in many few cases of interest the list is so long that they are displayed further down in the doc string; we provide a few here: .. hidden-code-block:: none :linenos: :label: + show/hide plot markers **Markers** ============= =============================== character description ============= =============================== ``'.'`` point marker ``','`` pixel marker ``'o'`` circle marker ``'v'`` triangle_down marker ``'^'`` triangle_up marker ``'<'`` triangle_left marker ``'>'`` triangle_right marker ``'1'`` tri_down marker ``'2'`` tri_up marker ``'3'`` tri_left marker ``'4'`` tri_right marker ``'s'`` square marker ``'p'`` pentagon marker ``'*'`` star marker ``'h'`` hexagon1 marker ``'H'`` hexagon2 marker ``'+'`` plus marker ``'x'`` x marker ``'D'`` diamond marker ``'d'`` thin_diamond marker ``'|'`` vline marker ``'_'`` hline marker ============= =============================== .. hidden-code-block:: none :linenos: :label: + show/hide plot line styles **Line Styles** ============= =============================== character description ============= =============================== ``'-'`` solid line style ``'--'`` dashed line style ``'-.'`` dash-dot line style ``':'`` dotted line style ============= =============================== .. hidden-code-block:: none :linenos: :label: + show/hide plot color abbrevs **Colors** The supported color abbreviations are the single letter codes ============= =============================== character color ============= =============================== ``'b'`` blue ``'g'`` green ``'r'`` red ``'c'`` cyan ``'m'`` magenta ``'y'`` yellow ``'k'`` black ``'w'`` white ============= =============================== and the ``'CN'`` colors that index into the default property cycle. If the color is the only part of the format string, you can additionally use any `matplotlib.colors` spec, e.g. full names (``'green'``) or hex strings (``'#008000'``). The basic plotting examples above showed how the character color abbreviations can be combined with either markers or line styles. And a gallery of Matplotlib's "named" colors is provided `at the bottom of this page `_. How do we use these parameters? Here is an example, showing two curves in a single figure: .. code-block:: python :linenos: plt.plot(x, y, color = 'magenta', ls = '-.', lw = 2, marker = 'v', ms = 8) plt.plot(x, y2, color = 'k', ls = ':', lw = 2, marker = 'o', mew = 2, mec = 'dodgerblue', mfc = 'limegreen', ms = 6) plt.ion() plt.show() Some comments on these commands: * You can check the the descriptions of the keywords with the function's doc string or tables above. * We could have used some of the above abbreviations for color and lines, like ``m-.`` in place of ``color = 'magenta', ls = '-.'``, but once we are specifying a lot of options, using the full option names may be easier to read. * Note how in the second ``plt.plot`` command, we were specifying so many options that we decided to space them onto separate lines. This can be convenient for clarity, both for reading and changing options; the indentation of each option is not *necessary* here, it is a programming style choice that aids reading (as does vertically aligning the ``=`` symbols). * Calling the ``plt.ion()`` function just before ``plt.show()`` turns interactive mode "on", which will not add functionality in the Jupyter notebook environment, but if working in iPython allows one can keep typing commands without having to close the plot. * Plotted arrays are displayed in the order listed, so the first one will be furthest in the background and the last one in the foreground. Anyways, the above leads to the colorful plot: .. figure:: media/plot/plot_ex_05.svg :figwidth: 60% :align: center :alt: plot of two arrays, Ex 5 .. note:: Earlier, we noted that the Python interpreter reads each line separately, and if you want to spread a single command onto the next line you :ref:`would use the continuation of line character ` ``\``. How, then, can the above ``plt.plot()`` span Lines 3-11 without using ``\`` at all? It happens because there is an opening parenthesis ``(`` in Line 3, and the interpreter will continue to treat everything it reads as part of that single expression until it reaches the closing ``)``. See :ref:`here ` for more examples of Python's automatic line continuation. .. created with: plt.figure("p5") plt.plot(x, y, color = 'magenta', ls = '-.', lw = 2, marker = 'v', ms = 8) plt.plot(x, y2, color = 'k', ls = ':', lw = 2, marker = 'o', mew = 2, mec = 'dodgerblue', mfc = 'limegreen', ms = 6) plt.savefig("plot_ex_05.svg") Titles, labels and axis details ==================================== We can add a lot more features to the plot that really make it useful for presenting information. For example, right now we don't know anything about what the units along the x- and y-axes, and adding a title would be helpful to know what is being plotted. We can even put a legend into the plot to show labels for each plot: this is done by adding a ``label = `` kwarg to each plot with a string value to display, and then use of the ``plt.legend()`` function before showing the plot. We can let Matplotlib guess a good location for the legend or specify it ourselves. Consider the following: .. code-block:: python :linenos: plt.plot(x, y, color = 'magenta', ls = '-.', lw = 2, marker = 'v', ms = 8, label = 'y') plt.plot(x, y2, color = 'k', ls = ':', lw = 2, marker = 'o', mew = 2, mec = 'dodgerblue', mfc = 'limegreen', ms = 6, label = 'y2') plt.xlabel('x (in meters)') plt.ylabel('data measurement (in meters)') plt.title('Important results') plt.legend(loc='upper center') plt.ion() plt.show() .. created with: plt.figure("p6") plt.plot(x, y, color = 'magenta', ls = '-.', lw = 2, marker = 'v', ms = 8, label = 'y') plt.plot(x, y2, color = 'k', ls = ':', lw = 2, marker = 'o', mew = 2, mec = 'dodgerblue', mfc = 'limegreen', ms = 6, label = 'y2') plt.xlabel('x (in meters)') plt.ylabel('data measurement (in meters)') plt.title('Important results') plt.legend(loc='upper center') plt.ion() plt.show() plt.savefig("plot_ex_06.svg") .. figure:: media/plot/plot_ex_06.svg :figwidth: 60% :align: center :alt: plot of two arrays, Ex 6 .. note:: Python can interpret LaTeX's "math mode" in strings. So if you are familiar with this powerful way to write technical expressions, you can spice up your plots. Just note that LaTeX's escape character ``\`` is also recognized as such in Python, and so one has to include 2 of them in most cases so that it gets passed through to LaTex correctly. For example, we could use the formula :math:`y \approx x^2` in the first plot's label, above. In pure Latex, this would be encoded as ``$y \approx x^2$``; however, the Python string in the label would have to contain it as: ``$y \\approx x^2$``. You can verify this in the string label above. Matplotlib estimates default ranges of both the x- and y-axes to display the full area of plotted points. The limits of each can be set separately with ``plt.xlim()`` and ``plt.ylim()`` functions, respectively. (Here and below, if there is a ``plt.xSOMETHING()`` function, one can generally expect to find a ``plt.ySOMETING()`` function with similar parameters and syntax, and vice versa.) Note that setting the bounds this way can chop of pieces of the plot. Additionally, we can set the relative units or ratio of units between the two axes. For example, if the axes both share the same units, we might want to make sure that a distance between the "0" and "1" in each case covers the same amount of plot space; that is, a circle should appear as a circle, not as an oval because one axis is stretched compared to another (by default, the module will *not* try to ensure this -- it treats the axis units as independent). The ``plt.axis()`` function can take the arguments ``'scaled'`` and ``'equal'`` as two different ways to try to enforce the relationship of axis units: the former tries to adjust the dimensions of the plot, and the latter tries to change the ranges (so it might lead to ignoring ``plt.xlim`` and ``plt.ylim`` settings). The locations along the plot edges with dashes and numbers labelling the axis are known as **major ticks**. Matplotlib has some inner formula to place these by default. But you can pass an array of values for the tick locations along either axis with ``plt.xticks()`` or ``plt.yticks()``. The ticks can even be turned off by passing an empty list with, for example, ``plt.xticks([])`` The axes are labelled with numbers, but sometimes adding in the standard x- and y- axes provide useful visual cues. While we could make more arrays to accomplish this, there are Matplotlib functions for plotting such lines: ``plt.axhline()`` plots a horizontal line that is by default at :math:`y=0` and across the entire plot; and ``plt.axvline()`` is the vertical analogue. If we might want these to be in the background, we would plot these before the main curves. As a style point, I often like making these light gray (instead of default black) and a bit thinner than the default. As we start making several plots, it can be useful to use the ``plt.figure()`` function to signify the start of a new plot; otherwise, we might just keep adding to existing plots accidentally. Later, we will also see that we can control useful feature about the plot (size, dimensions, resolution) using this function, too. .. code-block:: python :linenos: plt.figure("example plot 7") plt.axhline(c = '0.75', lw = 0.5) # horiz line (def, y=0), light gray color plt.axvline(c = '0.75', lw = 0.5) # vert line (def, x=0), light gray color plt.plot(x, y, color = 'magenta', ls = '-.', lw = 2, marker = 'v', ms = 8, label = 'y') plt.plot(x, y2, color = 'k', ls = ':', lw = 2, marker = 'o', mew = 2, mec = 'dodgerblue', mfc = 'limegreen', ms = 6, label = 'y2') plt.axis('scaled') # call *before* plt.xlim and plt.ylim plt.xlim(-3, 3) plt.ylim(-1, 5) plt.yticks(ticks=np.linspace(-1,5.5, 0.5)) plt.xlabel('x (in meters)') plt.ylabel('data measurement (in meters)') plt.title('Important results for the $^2\\Psi_\\alpha$ particle') plt.legend() # let plt guess a good legend location plt.ion() plt.show() .. created with: plt.figure("p7") plt.axhline(c = '0.75', lw = 0.5) # horiz line (def, y=0), light gray color plt.axvline(c = '0.75', lw = 0.5) # vert line (def, x=0), light gray color plt.plot(x, y, color = 'magenta', ls = '-.', lw = 2, marker = 'v', ms = 8, label = 'y') plt.plot(x, y2, color = 'k', ls = ':', lw = 2, marker = 'o', mew = 2, mec = 'dodgerblue', mfc = 'limegreen', ms = 6, label = 'y2') plt.axis('scaled') # call *before* plt.xlim and plt.ylim plt.xlim(-3, 3) plt.ylim(-1, 5) plt.yticks(ticks=np.arange(-1,5.5, 0.5)) plt.xlabel('x (in meters)') plt.ylabel('data measurement (in meters)') plt.title('Important results for the $^2\\Psi_\\alpha$ particle') plt.legend() # let plt guess a good legend location plt.ion() plt.show() plt.savefig("plot_ex_07.svg") \.\.\. which leads to: .. figure:: media/plot/plot_ex_07.svg :figwidth: 60% :align: center :alt: plot of two arrays, Ex 7 Grid of plots ========================== In addition to displaying several curves in the same plot, we can also make a single figure with several plots. There are multiple syntaxes for doing this. At its most basic, we can picture the figure being made up of an :math:`N \times M` matrix of plots, which we can walk through, row-by-row from the upper left plot (and each plot is indexed from :math:`[1, NM]`), adding relevant details to each one. This is specified with ``plt.subplot()``, which is used to indicate both the dimensions of the grid and which particular plot we want to edit. From its docstring ``plt.subplot?``: .. code-block:: none :linenos: Signature: plt.subplot(*args, **kwargs) Docstring: Add a subplot to the current figure. ... Call signatures:: subplot(nrows, ncols, index, **kwargs) subplot(pos, **kwargs) ... Parameters ---------- *args Either a 3-digit integer or three separate integers describing the position of the subplot. If the three integers are *nrows*, *ncols*, and *index* in order, the subplot will take the *index* position on a grid with *nrows* rows and *ncols* columns. *index* starts at 1 in the upper left corner and increases to the right. *pos* is a three digit integer, where the first digit is the number of rows, the second the number of columns, and the third the index of the subplot. i.e. fig.add_subplot(235) is the same as fig.add_subplot(2, 3, 5). Note that all integers must be less than 10 for this form to work. In the "Parameters" section, the first paragraph under ``*args`` refers to the syntax of Line 9. The second paragraph under there refers to Line 10. They both contain the same information: basically, if each of the number of rows, number of columns and total number of plots is a single digit (:math:`<10`), then you can use the "simpler" second form. Otherwise, you must use the first one. The descriptions above will probably be clearer with an example. Let's first make another set of 1D arrays to plot:: x3 = np.array([-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2]) y3 = np.array([4, 2.25, 1, 0.25, 0, 0.25, 1, 2.25, 4]) Where this is similar to the original ``x`` and ``y`` array pair, but with a smaller step size along the x-axis and hence a better approximation to the analytic :math:`y=x^2` curve. To see how this compares, we will plot this with the original 1D arrays on one subplot, and then put ``y2`` on a second subplot. .. code-block:: python :linenos: plt.figure("subplot example") plt.subplot(1, 2, 1) # first plot in 2x1 grid plt.axhline(c = '0.75', lw = 0.5) plt.axvline(c = '0.75', lw = 0.5) plt.plot(x, y, label = 'step=1') plt.plot(x3, y3, label = 'step=0.5') plt.axis('scaled') plt.xlim([-2.5, 2.5]) plt.ylim([-2, 5]) plt.xlabel('x') plt.ylabel('height') plt.title('Approximations to $y=x^2$') plt.legend() plt.subplot(1, 2, 2) # second plot in 2x1 grid plt.axhline(c = '0.75', lw = 0.5) plt.axvline(c = '0.75', lw = 0.5) plt.plot(x, y2, marker='o', c = 'green') plt.axis('scaled') plt.xlim([-2.5, 2.5]) plt.ylim([-2, 5]) plt.xlabel('x') plt.title('The other plot') plt.ion() plt.show() Since the number of plots is in single digits, we could have written the subplot commands in the abbreviated syntax: ``subplot(121)`` and ``subplot(122)``. In either case, the output plot would look the same: .. figure:: media/plot/plot_ex_08.svg :figwidth: 60% :align: center :alt: plot of two arrays, Ex 8 .. note plt.figure("subplot example") plt.subplot(1, 2, 1) # first plot in 2x1 grid plt.axhline(c = '0.75', lw = 0.5) plt.axvline(c = '0.75', lw = 0.5) plt.plot(x, y, label = 'step=1') plt.plot(x3, y3, label = 'step=0.5') plt.axis('scaled') plt.xlim([-2.5, 2.5]) plt.ylim([-2, 5]) plt.xlabel('x') plt.ylabel('height') plt.title('Approximations to $y=x^2$') plt.legend() plt.subplot(1, 2, 2) # second plot in 2x1 grid plt.axhline(c = '0.75', lw = 0.5) plt.axvline(c = '0.75', lw = 0.5) plt.plot(x, y2, marker='o', c = 'green') plt.axis('scaled') plt.xlim([-2.5, 2.5]) plt.ylim([-2, 5]) plt.xlabel('x') plt.title('The other plot') plt.ion() plt.show() plt.savefig("plot_ex_08.svg") Save to file ======================== Matplotlib contains a function to save a figure to a file, called ``plt.savefig()``. You can use it instead of, or along with (e.g., calling it after), ``plt.show()``. The main argument to provide is a positional one: the output filename. This filename can include path elements to write the file directly to another directory, otherwise it is written to the current working directory. The filename should typically include a relevant **file extension**, which is the short few characters at the end of a file (following ".") to specify the format of the file. For images, ``png``, ``jpg`` and ``tif`` are some the most common extensions or formats. These are all part of a grouping called **rasterized** images, for which you can think of the entire image being chopped up into a regular 2D grid to store the information; the lines and dots just paint in the grid elements to form the stored image. For such files, specifying the spatial resolution of the grid is important: just like with computer or cell phone screens, the images can be "nicer" and more detailed with higher resolution images. This is quantified with **dots per inch (DPI)**, with greater DPI being higher resolution. Python uses some default DPI when saving images, but one can also specify kwarg in the function, such as:: plt.savefig("figure_01.png") # save to current dir, def DPI plt.savefig("../output_dir/figure_02.png") # save to another dir, def DPI plt.savefig("figure_03.png", dpi=300) # save to current dir, set DPI Having a higher DPI might produce a nicer image, or one that can be zoomed in usefully, but also a larger file size. How large the file size (and how it scales with DPI) depends on the image format; but that is precisely why there are different image formats: they store information differently, typically with an aim to **compress** the image into as small a size on the computer as possible. There is no universally "best" resolution -- the choice is usually context dependent. Many scientific journals require published figures to have a DPI of at least 300, but lower is probably fine for many applications. A different class of images are known as **vector graphics**, which include ``svg``, ``pdf`` (yes, the same one often used for text documents) and ``eps``. These save the lines and letters of the plot as separate objects, which retain their identity when saved to file. This means that when zooming in, the image doesn't start looking grainy as the grid level gets reached. For line images and text, or images generated with lots of shapes, this can be a very useful file format. (If you have a standard photograph, then the continuous nature of most elements would rule out vector graphics as a good format.) Specifying a vector graphic file output follows the same syntax as for rasterized images, above:: plt.savefig("figure_01.svg") etc. Which file format is best for your image? You can always test a couple options and see-- be sure to check both the normal image, the zoomed image and the file size. There are also other file formats out there, too. Note that some have tradeoffs-- the above formats are all **lossless** meaning that they don't try to sacrifice image quality for file size, but other formats will (they are **lossy**). For example, ``gif`` is another rasterized graphic with fairly compact file size, but generally poor quality; it is popular for simple, lightweight web images and movies, but would not be a good choice for most plots. Finally, we note if you want to control the size of the saved image, that is done using the ``figsize`` kwarg in the ``plt.figure()`` function. It is necessary to provide both the width and height of the final figure, so this pair of values must be grouped together, e.g.:: plt.figure("some fig label", figsize=(WIDTH, HEIGHT)) The units of WIDTH and HEIGHT are inches. .. add a note on color maybe a subsection, noting RGB, RGBA, hex, [0, 1] values ? Maybe later section .. maybe for later **minor ticks**, for finer distance determination. plt.tick_params(axis='both', which='major') .. edited to here: Let us try and use more points to draw the same graph. To do that we can use the numpy **linspace()** function. .. code-block:: python :linenos: x = np.linspace(-2,2) y = x**2 plt.plot(x,y) plt.show() .. image:: media/simplePlotSmooth.png :width: 75% :align: center :alt: plot of f(x)=x^2 Now the graph looks smoother than in the previous plot. In general when plotting a graph the ``linspace(a, b, n)`` function or the ``range(a, b, c)`` function is used generate the :math:`x`\-values. What do the values ``a, b, c`` and ``n`` refer to? By default the function ``linspace(a, b)`` generates 100 points evenly distributed on the interval :math:`[a, b]`. This may often be enough to obtain a smooth curve, but we can control the number of points. Axis label, Title and Legend ---------------------------- We will plot the same function as above but this time with some decorations. We will label the axis, provide a title and a legend and plot the graph in green. .. code-block:: python :linenos: x = np.linspace(-2, 2) y = x**2 plt.plot(x, y, 'g-', label=r'$f(x) = x^2$') plt.xlabel('x (in meter)') plt.ylabel('y (in square meter)') plt.title('My first graph') plt.legend(loc=0) .. image:: media/SimplelabelledGraph.png :width: 75% :align: center :alt: plot decoration * The first line of code generate and array 100 points evently spaced between -2 and 2. * The third line is the plot function with some few new arguments that need explanation. * The **g-** argument consists of a color (**g**) and a line style (**-**). So the **g-** argument means that the graph will be drawn with solid line style using the green color. Common colors include .. list-table:: :header-rows: 1 :widths: 20 20 * - character - color * - 'b' - blue * - 'g' - green * - 'r' - red * - 'y' - yellow * - 'c' - cyan * - 'k' - black and common line styles and line markers include .. list-table:: :header-rows: 1 :widths: 20 20 * - character - description * - '.' - point marker * - 'v' - triangle-up marker * - '^' - triangle-down marker * - 'o' - circle marker * - 'D' - diamond marker * - '-' - solid line style * - '--' - dashed line style * - '-.' - dash-dot line style * The last argument of the function is the label for the legend. The letter **r** that precedes the string is used to invoke latex command. * Lines 4,5, and 6 are self-explanatory * The last line places the lagend at a location specified by the **loc** argument. Location attributes can be given as a string or a numerical values. Locators values include .. list-table:: :header-rows: 1 :widths: 20 20 * - Location string - Location numerical value * - 'best' - 0 * - 'upper right' - 1 * - lower right' - 2 * - 'center' - 10 Plotting several graphs on the same plot ---------------------------------------- Using pyplot, it is possible to plot several graphs on the same plot. Example: Plot the function :math:`f(x)=x^2` and :math:`g(x)=\frac{10}{1+e^{-x}}` on the interval :math:`[-3,3]` on the same graph. Use a black dash-dot line style for the first graph and a yellow circle marker for the second graph. Locate the legend at the upper center of the plot. .. code-block:: python :linenos: x = np.linspace(-3, 3, 200) y = x**2 z = 10 / (1 + np.exp(-x)) plt.plot(x, y, 'k-.', x, z, 'yo') plt.legend([r"$y=x^2$", r"$y = \frac{7}{1+e^{-x}}$"], loc=9) plt.savefig('myGraph.png') .. image:: media/twoGraphs.png :width: 75% :align: center :alt: 2 functions of the same plot Line 8 of the code allows us to save the graph with the name **myGraph.png**. The extension **.png** can be replaced by **.eps** or **.pdf** of **.jpeg**, etc. Plotting several graphs side by side ------------------------------------ Now instead of plotting several graphs on the same plot, we can put them side by side Example: We want to plot the functions :math:`f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2}}` side by side for :math:`\sigma = 0.25, 0.5, 0.75, 1.0`. There are several ways of achieving this. Below is one of the ways I found more intuitive .. code-block:: python :linenos: x = np.arange(-3, 3, 0.01) fig, axs = plt.subplots(2, 2, figsize=(10,8)) axs[0,0].plot(x, y1, label=r'$\sigma = 0.1$') axs[0,0].legend(loc=2) axs[0,1].plot(x, y2, label=r'$\sigma = 0.5$') axs[0,1].legend(loc=2) axs[1,0].plot(x, y3, label=r'$\sigma = 0.75$') axs[1,0].legend(loc=2) axs[1,1].plot(x, y4, label=r'$\sigma = 1.0$') axs[1,1].legend(loc=2) fig.savefig('sideBysideGraphs.eps') .. image:: media/sideBysideGraphs.png :width: 75% :align: center :alt: side by side plot